Essay: College Algebra Graphing Transformations

Pages: 3 (777 words)  ·  Bibliography Sources: 0  ·  Topic: Mathematics  ·  Buy This Paper

SAMPLE EXCERPT:

[. . .] b) g (x)= (x+5)^2

Answer: The domain of the function g (x) = (x + 5)^2 is all real numbers.

Show Work or Explain in Words:

Like a), the domain of g (x) is defined for every value of x, therefore the domain of g (x) is all real numbers.

c) f (x)= 16x / x^2 +9

Answer: The domain of the function f (x)= 16x / x^2 + 9 is all real numbers.

Show Work or Explain in Words:

The domain of f (x) is defined for every value of x, therefore the domain of f (x) is all real numbers.

d) g (x)=13x^2 / 5x+9

Answer: The domain of g (x) is defined for every value of x, except where x = -1.8.

Show Work or Explain in Words:

The domain of g (x) is defined for every value of x, except where the denominator is 0. Because 5x + 9 = 0 where x = -1.8, it stands to reason that the domain of the function has a discontinuity at -1.8.

e) f (x)= 6 / x^5

Answer: The domain of f (x) is defined for every value of x.

Show Work or Explain in Words:

The domain of f (x) has a denominator that never amounts to 0, therefore every value of x is defined.

3. Finding equations of asymptotes of rational functions. Recall that asymptotes are lines therefore the Answer must be given as an equation of a line.

a) Find the equations of both the horizontal and vertical asymptotes of the rational function f (x) = 5x-1 / x^2 +9

Answer: There are no horizontal asymptotes. There are vertical asymptotes where y = -1 and y = 1.

Horizontal: None.

Vertical: The range falls where -1 < f (x) < 1.

Show Work or Explain in Words:

All values of x is defined in the function f (x), therefore the domain is all real numbers. The function, however, only works under a specific range, where the values of f (x) for x is no lesser than -1 and no greater than 1.

b) Find the equations of both the horizontal and vertical asymptotes of the rational function f (x) = 2x^2 + 8 / x-1

Answer: The horizontal asymptote is at x = 1.… [END OF PREVIEW]

College Admission and Financial Aid for Illegal Term Paper


Transformation About Litertura Term Paper


Causes and Effects for Tuition Increases in College Term Paper


Whether Public College Education Should Be Free in the USA Term Paper


College Worth It?' Weighs on Local Students Research Paper


View 1,000+ other related papers  >>

Cite This Essay:

APA Format

College Algebra Graphing Transformations.  (2011, September 15).  Retrieved August 23, 2019, from https://www.essaytown.com/subjects/paper/college-algebra-graphing-transformations/4066263

MLA Format

"College Algebra Graphing Transformations."  15 September 2011.  Web.  23 August 2019. <https://www.essaytown.com/subjects/paper/college-algebra-graphing-transformations/4066263>.

Chicago Format

"College Algebra Graphing Transformations."  Essaytown.com.  September 15, 2011.  Accessed August 23, 2019.
https://www.essaytown.com/subjects/paper/college-algebra-graphing-transformations/4066263.